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The problems of evaluating and subsequently maximizing the exact likelihood function of vector autoregressive moving average 
(ARMA) models are considered separately. A new and efficient procedure for evaluating the exact likelihood function is presented. 
This method puts together a set of useful features that can only be found separately in currently available algorithms. A procedure 
for maximizing the exact likelihood function, which takes full advantage of the properties offered by the evaluation algorithm, is 
also considered. Combining these two procedures, a new algorithm for exact maximum likelihood estimation of vector ARMA 
models is obtained. Comparisons with existing procedures, in terms of both analytical arguments and a numerical example, are 
given to show that the new estimation algorithm performs at least as well as existing ones, and that relevant real situations occur in 
which it does better. 
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Residuals; Stationarity. 

 
1. INTRODUCTION 

 
 This article proposes a new procedure for exact maximum 
likelihood estimation of vector autoregressive moving av-
erage (ARMA) models. A sharp distinction between eval-
uating and maximizing the likelihood function is made. This 
permits a detailed analysis of all problems that arise in the 
estimation process. The solutions obtained through this 
analysis can then be integrated into a complete estimation 
procedure that takes advantage of some properties of the 
likelihood function that have not been fully exploited in pre-
vious papers. 
 Although there has been abundant research on evaluating 
the likelihood function of vector ARMA models (see, for 
example, Hall and Nicholls 1980; Hillmer and Tiao 1979; 
Nicholls and Hall 1979; and Shea 1987�), only a few authors 
have paid attention to the problem of its subsequent max-
imization. Furthermore, such attention has usually been re-
stricted to suggesting, in a few lines, the use of a standard 
optimization algorithm to maximize the likelihood function, 
evaluated as extensively described in the just-cited papers.   
An interesting exception was provided by Shea (1984, pp.  
99–100). 
 With regard to the computation of the likelihood function, 
none of the existing methods can be considered fully satis-
factory. This is due to the fact that many of the necessary 
properties of a method for evaluating the likelihood function 
are scattered among the existing procedures. Thus, although 
each of many existing algorithms has some useful properties, 
it also lacks other properties that can be found in alternative 
procedures. 
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 For instance, the algorithm of Shea (1987, 1989) can be 
considered, from a computational viewpoint, to be the most 
efficient of the existing procedures. But its use does not permit 
the automatic detection of noninvertible models. This task     
is easily handled with the algorithm of Hall and Nicholls 
(1980) and with an extension to the multivariate context of  
the algorithm of Ljung and Box (1979). But the former in- 
volves a high computational cost (in many cases), whereas  
the latter involves both some computational inefficiency and   
a loss of numerical precision, due to the requirement for an 
explicit matrix inversion. Finally, the algorithm of Hillmer 
and Tiao (1979) does not permit the computation of either the 
exact likelihood function or an appropriate set of residuals, 
except in the case of pure moving average (�MA) models; this 
fact may become an important drawback when the model 
considered includes an autoregressive (AR) part and the 
sample used contains extreme values among the initial obser-
vations. 
 A thorough analysis of currently available procedures 
allows one to discover and fully exploit new possibilities 
ignored in the previously cited papers. Thus, in Section 2 a 
new method of evaluating the exact likelihood function of 
vector ARMA models is described in detail. The new 
algorithm puts together the advantages that can be found 
separately in existing procedures and does not suffer from any 
of their drawbacks. In Section 3 computational techniques for 
maximizing the likelihood function are considered. These 
techniques take full advantage of the properties offered by the 
evaluation algorithm. An illustrative example of an actual 
situation in which the new estimation procedure performs 
better than one of the most frequently used procedures is 
given in Section 4. Finally, in Section 5 conclusions are sum- 
marized. 
 

2. EVALUATION OF THE EXACT 
LIKELIHOOD FUNCTION 

 
 Let wt be an m-dimensional vector-valued time series. It is 
assumed that wt follows the vector ARMA(�p,�q�) model 
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 ( ) ( )t tB Bw a  , (1) 

where 1( ) p
pB B B   I   , 1( )B B I   

q
q B   ; B is the back shift operator; t t w w  , 

 ( 1, ..., )i i p ,  ( 1, ..., )i i q , and μ are m�×�m, 
m�×�m, and m�×�1 parameter matrices, and the ’sta  are  
m�×�1 random vectors identically and independently dis-
tributed as 2N( , )0 Q , with σ2>0 and Q�(m�×�m) symmetric 
and positive definite. This decomposition of TE[ ]t ta a , al- 
though not unique, is useful for obtaining maximum like-
lihood estimates by maximizing a concentrated log-likelihood 
as a function of  ( 1, ..., )i i p ,  ( 1, ..., )i i q , μ and 
Q only (Sec. 3). For stationarity, it is required that the zeros 
of ( ) |B   lie outside the unit circle. Furthermore, (1) is 
assumed to satisfy the conditions derived by Hannan (1969) 
for the model to be identified. 
 Consider a sample of size n and let w  = [ T

1w , …, T
nw ]T 

(mean-corrected observations), a = [ T
1a , …, T

na ]T (white 
noise perturbations), and u  = [ T

1 pw , …, T
0w , T

1 qa , …, 
T
0a ]T (unknown pre-sample values). Then, (1) may be written 

as 

  D w D a Vu  , (2) 

where D  and D  are nm�×�nm block matrices with identity 
matrices on the main diagonal and k  and k  down the 
k-th subdiagonal. Further, V is the nm�×�(�p�+�q�)�m block 
matrix V = [ ,G G  ], where G  and G are the following 
nm�×�pm and nm�×�qm block matrices: 
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 On the basis of the previous definitions, Nicholls and Hall 
(1979) have shown that the exact likelihood function of the 
parameters 1[ , ..., ]p   , 1[ , ..., ]q   , μ, σ�2, and 
Q is given by 

2 2 ( / 2 ) ( / 2 )( , , , , | ) (2 ) | |nm nL    Q w Q    

  T (1/2 )
2

1
( , , , | )| exp

2
S


  Q w     . (3) 

The quadratic form in the exponential is given by S��(�Φ,�Θ, 
μ,�Q�|�w�) = � T( ) ( )  w ê w ê     , where ϒ and Λ  
are the following (�p�+�q�+�n�)�m�×�nm and (�p�+�q�+�n�)�m 
×�(�p�+�q�)�m matrices: 

 
1

, ,
( ) ( ) 

  
      

I0

I R K I R ZT
   (4) 

and 

 T 1 TE[ | ] ( )   ê T u w w    . (5) 

 In (4), the nm�×�nm matrix K is given by K = 1D D , 
the nm�×�(�p�+�q�)�m matrix Z is given by 1Z D V , and 
if T 2E[ ]t t a a Q  and T 2E[ ]   u u  , then the m�×�m 
and (�p�+�q�)�m�×�(�p�+�q�)�m matrices R and T are such that 
RTR = Q−1 (i.e., RQRT = I�) and TTT = Ω−1 (i.e., TΩTT 
= I�). Further, the matrix Ω can be partitioned as follows: 

 
T

 
  

A B 

B C
 . 

The (�i,�j�)-th block of A is given by T2E[ ]ij i p j p
 A w w   

= ( )j i  ( , 1, ..., )i j p , and the (�i,�j�)-th block of B is 
given by T2E[ ]ij i p j q

 B w a  = ( )j i q p  wa  
( 1, ..., ; 1, ..., )i p j q  . Because A is symmetric and 

TE[ ]t i t w a 0  for i�>�0, to compute A and B only the 
theoretical auto-covariance and cross-covariance matrices 

( )k , 0, ..., 1k p  , and ( )kwa , 1, ..., 0k q  , 
are needed. Finally, C is a block-diagonal qm�×�qm matrix 
with Q’s along the main diagonal. 
 Thus, to evaluate (3), one must compute the determinant 

T |    and the quadratic form S��(�Φ,�Θ, μ,�Q�|�w�). Hall and 
Nicholls (1980) have suggested computing the latter as fol-
lows: 

 T T 1 T( , , , | ) ( ) [ ( ) ]( ),S  Q w w I w           (6) 

which may be regarded as the residual sum of squares of the 
regression of ( )w  on Λ. To evaluate ( )w  and Λ, they 
computed ( )I R Kw  and ( )I R Z  [see (4)] recursively. 
 It is shown next, by exploring in further detail the 
elements of (3), how to compute the determinant T |    and 
the quadratic form (6) in a computationally more efficient 
manner. It is also shown (i) how to compute an approximation 
to the exact likelihood function to any desired degree of 
accuracy, (ii) how to detect noninvertible and�/or non-
stationary models, and (iii) how to calculate an appropriate set 
of residuals for a given set of data and parameter values. 
 

2.1 A New Method of Computing the Exact 
 Likelihood Function 
 
 First, it may be noted from (4) that 

T 1 T( )     

T 1 T 1 1T T T

1 T 1 1 T 1 1T T T

( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( )

  

    

 
 

   

T Z I R

I R ZT I R ZT T Z I R

   

   
 

and, because T T T[ , ]w 0  , where 

 0( ) I R â  (7) 
and 
 0 E[ | , = ] â a w u 0 Kw , (8) 

the quadratic form (6) can be written as 

T T( , , , | ) ( )S   Q w I R       

 1 T 1 1T T T( ) ( )   ZT T Z I R   . (9) 
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Also from (4), it may be noted that T 1T 1  I T XT  , 
where the (�p�+�q�)�m�×�(�p�+�q�)�m matrix X is given by 

 T T
11X V H HV  (10) 

and, if g = max{�p,�q�}, then the gm�×�(�p�+�q�)�m matrix V1 
consists of the first gm rows of V and the nm�×�gm matrix     
H consists of the first gm columns of 1( ) I R D . Thus 
equation (9) can be rewritten as 

T T( , , , | ) ( )S   Q w I R       

 T1 T 1 T T
11( ) ( )   Z V H HV Z I R  . (11) 

Now define the following nm�×1 vector: 

 1T T( ) h D I R  , (12) 

and let h  contain the first gm elements of h. Then equation 
(11) can be rewritten as 

( , , , | )S Q w    

 T TT T 1 T 1
1 11 1( )   h V V H HV V h    , 

where it may be verified that T T1 T 1
1 11 1( ) V V H HV V  = 

[ T 1 T
1 1( ) V V H H ]−1. Thus the quadratic form (11) is 

( , , , | )S Q w    

 TT T 1 T 1
1 1[ ( ) ]   h V V H H h    . (13) 

Then, noting from (4) that T 1T 1,  I T XT   it is clear 
that T T 1 T T X   , so [see (10)] the determinant 

T |    can be calculated as 

 
TT 1 T

11

T T 1 T
1 11 1

|=| |

=| || ( ) |,









V H HV

V V V V H H

     

 
 

(14)
 

which is readily available as a by-product of the evaluation   
of the second term on the right side of (13). Note than when 
m�=�1 (i.e., when dealing with univariate models), expres- 
sions (11) and (14) reduce to equations (2.6) and (2.4) in     
the work of Ljung and Box (1979). Also, note that evaluation 
of these expressions requires the explicit inversion of the 
matrix T

1 1V V , which results in a loss of computational ef- 
ficiency and occasionally in a loss of numerical precision as 
well. This matrix inversion can be avoided as follows. 
 Let M denote the Cholesky factor of T

1 1 ,V V  so that 
T

1 1V V  = MMT and TT 1
1 1( )M V V M  = I. Then, 

T 1 T 1 T T 1 T
1 1[ ( ) + ] ( ) ,   V V H H M I M H HM M �so that 

the quadratic form (13) can be finally expressed as 

( , , , | )S Q w    

 T T T T T 1 T( ) ( ) ( )  M h I M H HM M h    . (15) 

Computation of the second term on the right side of (15) gives 
as a by-product the components of the determinant (14), which 
can be written in the form 

 T T T|=| |I M H HM   . (16) 

 The exact likelihood function (3) is then computed using 
(15) and (16). To evaluate these expressions, one needs (i) the 
gm�×�gm symmetric matrix T

1 1 ,V V  (ii) the gm�×�1 vector h , 
(iii) the gm�×�gm symmetric matrix HTH, and (iv) the nm�×�1 
vector η. 

 Once the elements of Ω are available (Hall and Nicholls 
1980, pp. 254–256; Kohn and Ansley 1982), the (�i,�j�)-th  
block ( 1, ..., ; 1, ..., )i g j i   of T

1 1V V  is given by 

T
1 , ,1

0 0
[ ]

p i q i

ij p k k i j q k k p i j
k k

 

    
 

  V V E E   , (17�) 

where, for 1, ...,j g , 

T( )
p i

ij p k i j
k j i

k


  
 

 E    

T( ) ( 1, ..., )
q i

q k i j
k j i

q p k i p


  
 

     wa  , 

and 

2
TT
2( )

p i

ij p k i j
k p j i

q p k


  
  

    waE    

T ( 1, ..., )q p i j i p p q     Q , 

with Γ(�k�)�=�Γ(−k�)T for k�<�0, Γwa(�k�)�=�0 for k�>�0, and 
Θi�=�0 for i�>�q. Now, because h  contains the first gm com-
ponents of h [see (12)] and H consists of the first gm columns 
of 1( ) I R D , to evaluate h  and HTH, the matrix 1D  is 
needed. It can be shown (Hillmer and Tiao 1979, pp. 652–
653) that 1D  is a lower triangular block matrix with identity 
matrices along the main diagonal and Ξk down the k-th 
subdiagonal, where 

 
1

( 1, ..., 1)k

q

k j
j

j k n


    , (18) 

with 0  I  and i  0  for i < 0. Then the j-th block of 
the gm�×1 vector h  is given by 

 T T

0
( 1, ..., )

n j

j i ji
i

j g





 h R  . (19) 

From the special structure of matrix H, the first block column 
of HTH is given by 

 TT T
1 1

0
[ ] ( 1, ..., )

n i

i k ik
k

i g


 


 H H R R  , (20) 

and the remaining diagonal and subdiagonal blocks of matrix 
HTH are evaluated in the following recursive manner: 

 TT T T
1, 1 11[ ] [ ]ij i j n jn i     H H H H R R  , (21) 

with 2, ...,i g  and 2, ...,j i . Finally, from (7) and  
(8), the n blocks that make up vector â0 can be computed 
recursively as follows: 

0 0,
1 1

( 1, ..., )
p q

i i j i j j i j
j j

i n 
 

    â w w â   , (22) 

with i w 0  for i�<�1 and 0 i â 0  for i�<�1. Then the i-th 
block of vector η is given by 0i i Râ  (i = 1, …, n). (The 
calculation of η through (7), (8) and (22) can also be found   
in Hall and Nicholls 1980, p. 256 and Ljung and Box 1979,   
p. 267.) 
 In summary, the following procedure is suggested to eval- 
uate the exact likelihood function of a vector ARMA model 
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(note that, except for step 1, no explicit matrix inversion is 
required): 
 
 1. Compute the Cholesky factor of matrix Q (say Q1�), 
its determinant (|Q| = |Q1|

2�), and a matrix R such that 
RQRT = I ( 1

1
R Q ). 

 2. Evaluate the theoretical auto-covariance and cross-
covariance matrices Γ�(�k�) (�k = 0�, .�.�.�, p�−�1�) and Γwa�(�k�)  
(�k = −q�+�1, .�.�.�, 0�). 
 3. Compute matrix T

1 1V V  from (17�) and compute its 
Cholesky factor M. 
 4. Evaluate the matrix sequence Ξk (�k = 1, .�.�.�, n�−�1�) 
from (18). 
 5. Calculate vector η using (22). 
 6. Compute vector h  from (19) and evaluate vector 

TM h . 
 7. Evaluate matrix HTH from (20) and (21). 
 8. Compute matrix T TI M H HM , its Cholesky factor 
(say L), and its determinant ( T T 2| |=| |I M H HM L ), 
which in turn is the determinant (16). 
 9. Use forward substitution to solve for λ in the lower-
triangular system T( )L M h  . 
 10. Compute the quadratic form (15) as S�(Φ,�Θ,�μ,�Q�|�w) 
= T T    . 
 
 Following the guidelines of Hillmer and Tiao (1979, pp. 
653–654) and Ljung and Box (1979, p. 269), this procedure 
can also take advantage of the special structure of some spe- 
cific models, such as multiplicative pure MA models and   
pure AR models. The details are straightforward and have 
been omitted. 
 
2.2 Properties of the New Algorithm 
 
 The previously outlined procedure is basically the result 
of extending and taking one step beyond the method of Ljung 
and Box (1979) for the scalar ARMA model. Because the 
explicit inversion of matrix T

1 1V V  is avoided through the 
use of its Cholesky factorization, a more computationally 
efficient and numerically stable method is obtained. Further, 
because the new algorithm operates with gm�×�gm matrices 
[see (15) and (16)] instead of (�p�+�q�)�m�×�(�p�+�q�)�m matrices 
[see (6)], it is also preferable from a computational stand- 
point to that of Hall and Nicholls (1980). To illustrate this, 
computer programs were written for the algorithm of Hall  
and Nicholls (1980) and the new algorithm developed in     
this article. The exact likelihood function was evaluated for a 
variety of vector ARMA models suitable for annual, quar- 
terly, and monthly data, under the assumption that 25 years  
of data were available. In Table 1 the ratio between the num- 
ber of time-consuming operations (multiplications, divisions, 
and square roots) required by the algorithm of Hall and 
Nicholls (1980) and those required by the new algorithm is 
presented for each of the models considered. This ratio is 
always greater than or equal to 1 and reaches its highest value 
for models with both p and q large. 
 The comparison from a computational standpoint be- 
tween the new algorithm and that of Shea (1989) is sum- 
marized in Table 2, which contains the same kind of infor-
mation as Table 1. Apart from possible minor change through 

Table 1.  Ratio between the Number of Time-consuming Operations 
Required by the Algorithm of Hall and Nicholls (1980) and Those 
Required by the New Algorithm, to Evaluate the Exact Likelihood 

Function for Various Models 

Models m = 2 m = 4 

Models for Annual Data (n = 25) 
AR(1) 1.00 1.00 
AR(2) 1.00 1.00 
MA(1) 1.00 1.00 
MA(2) 1.00 1.00 
ARMA(1,1) 1.05 1.04 
ARMA(2,1) 1.09 1.10 
ARMA(1,2) 1.09 1.10 
ARMA(2,2) 1.19 1.21 

Models for Quarterly Data (n = 100) 
AR(1) 4 1.03 1.05 
MA(1) 4 1.02 1.02 
ARMA(1,1) 4 1.20 1.23 
AR(1)×AR(1) 4 1.04 1.07 
AR(1)×MA(1) 4 1.07 1.08 
AR(1)×ARMA(1,1) 4 1.24 1.28 
MA(1)×AR(1) 4 1.06 1.07 
MA(1)×MA(1) 4 1.03 1.04 
MA(1)×ARMA(1,1) 4 1.24 1.28 
ARMA(1,1)×AR(1) 4 1.07 1.09 
ARMA(1,1)×MA(1) 4 1.09 1.11 
ARMA(1,1)×ARMA(1,1) 4 1.30 1.34 

Models for Monthly Data (n = 300) 
AR(1) 12 1.09 1.11 
MA(1) 12 1.07 1.09 
ARMA(1,1) 12 1.50 1.59 
AR(1)×AR(1) 12 1.10 1.12 
AR(1)×MA(1) 12 1.13 1.15 
AR(1)×ARMA(1,1) 12 1.52 1.61 
MA(1)×AR(1) 12 1.08 1.10 
MA(1)×MA(1) 12 1.09 1.10 
MA(1)×ARMA(1,1) 12 1.53 1.61 
ARMA(1,1)×AR(1) 12 1.09 1.11 
ARMA(1,1)×MA(1) 12 1.15 1.75 
ARMA(1,1)×ARMA(1,1) 12 1.57 1.65 

NOTE:  The operations required to compute the first p − 1 auto-covariance and the first q − 1 
cross-covariance matrices have been excluded, because they are required by both algorithms. 

 
refinements in coding, it can be seen that the relative effi- 
ciency of the new algorithm increases with m (except if p is 
high and much larger than q�), and that the new algorithm is 
clearly preferable for low- to medium-order models, whereas 
the method of Shea (1989) is more efficient for some higher-
order models. 
 Finally, note that the method of Hillmer and Tiao (1979) 
does not allow for an exact evaluation of the likelihood func-
tion when the model contains an AR part; furthermore, in the 
case of pure MA models, the expression of the exact like-
lihood function obtained in that paper is equivalent to that of 
Nicholls and Hall (1979). 
 With regard to other interesting properties, note first that 
when the model considered is invertible, the matrix sequence 
(18) converges to 0; this convergence is more rapid, the larger 
the moduli of the zeros of |�Θ(�B�)�| are (obviously, when q  = 
0, Ξk = 0 for �k ≥ 1). This may be exploited in the sub- 
sequent computation of (19), (20) and (21), because if Ξk = 0 
for, say, k ≥ r*, then not all of the operations involved in 
those expressions need to be carried out. The sequence (18) 
may be considered to have converged when 
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Table 2.  Ratio between the Number of Time-consuming Operations 
Required by the Algorithm of Shea (1989) and Those Required 

by the New Algorithm, to Evaluate the Exact Likelihood 
Function for Various Models 

Models m = 2 m = 4 

Models for Annual Data (n = 25) 
AR(1) 1.06 * 1.20 * 
AR(2) 1.00 * 1.07 * 
MA(1) 2.37 * 2.69 * 
MA(2) 1.75 * 1.92 * 
ARMA(1,1) 2.37 * 2.75 * 
ARMA(2,1) 1.83 * 2.00 * 
ARMA(1,2) 1.76 * 1.95 * 
ARMA(2,2) 1.74 * 1.94 * 

Models for Quarterly Data (n = 100) 
AR(1) 4 0.84 0.77 
MA(1) 4 1.48 * 1.60 * 
ARMA(1,1) 4 1.56 * 1.72 * 
AR(1)×AR(1) 4 0.74 0.65 
AR(1)×MA(1) 4 1.51 * 1.65 * 
AR(1)×ARMA(1,1) 4 1.49 * 1.57 * 
MA(1)×AR(1) 4 1.53 * 1.60 * 
MA(1)×MA(1) 4 1.36 * 1.46 * 
MA(1)×ARMA(1,1) 4 1.41 * 1.54 * 
ARMA(1,1)×AR(1) 4 1.34 * 1.37 * 
ARMA(1,1)×MA(1) 4 1.38 * 1.49 * 
ARMA(1,1)×ARMA(1,1) 4 1.41 * 1.53 * 

Models for Monthly Data (n = 300) 
AR(1) 12 0.48 0.36 
MA(1) 12 1.09 * 1.16 * 
ARMA(1,1) 12 1.12 * 1.19 * 
AR(1)×AR(1) 12 0.44 0.33 
AR(1)×MA(1) 12 1.10 * 1.17 * 
AR(1)×ARMA(1,1) 12 1.15 * 1.17 * 
MA(1)×AR(1) 12 0.93 0.89 
MA(1)×MA(1) 12 1.05 * 1.11 * 
MA(1)×ARMA(1,1) 12 1.08 * 1.13 * 
ARMA(1,1)×AR(1) 12 0.87 0.82 
ARMA(1,1)×MA(1) 12 1.06 * 1.12 * 
ARMA(1,1)×ARMA(1,1) 12 1.07 * 1.12 * 

NOTES:  An asterisk indicates that the new algorithm is preferred. The operations required to 
compute the first p − 1 auto-covariance and the first q − 1 cross-covariance matrices have been 
excluded, because they are required by both algorithms. 

 *
1 1

| ( , ) |  < 
m m

r
i j

i j 
 
    , 

where the parameter δ > 0 can be used to control the desired 
degree of approximation to the exact computation of the  
whole sequence (18). It is possible to make the convergence 
criterion sufficiently rigid (i.e., δ sufficiently small) such that 
the error implied by considering Ξk = 0 for k ≥ r* becomes 
negligible and hence so too does the difference between the 
exact (calculated with Ξk from k = 1 to k = n − 1) and the 
“approximate” (calculated with Ξk�=�0 for k�≥�r*�) likelihood. 
Note that this property, which may save much computing 
time, is analogous to the “quick recursions” property offered 
by the Chandrasekhar equations that form the basis of the 
method of Shea (1989, pp. 169–70). Furthermore, using      
the convergence property of (18) for invertible models, it is 
straightforward to detect the presence of any root of the MA 
operator lying inside the unit circle, because in such a case the 
sequence (18) will be explosive. In practice, it has been 
observed that the following inequality holds for strictly non- 
invertible models: 

 
min{ , }

1 1 1 1 1
| ( , ) | | ( , ) |

h qm m m m

h k
i j k i j

i j i j
    

         , 

for at least one h < n − 1. In general, when the MA operator 
has at least one root inside the unit circle, this condition will 
be true for h slightly larger than q, allowing detection of strict 
noninvertibility at the beginning of the computation of the 
sequence (18). In such a case, the evaluation algorithm flags a 
warning and stops, to avoid overflow problems in the 
subsequent computation of (20) and (21). But there is no 
problem in evaluating these expressions when any root of the 
MA operator lies on the unit circle, provided that the other 
roots have moduli larger than unity. 
 Also as a by-product, the new algorithm provides a nec- 
essary (though not sufficient, except for pure AR models) 
check on the stationarity of the model. This is due to the    
fact that the Cholesky decomposition of T

1 1V V  exists if and 
only if Ω is positive definite, which in turn is a necessary 
condition for stationarity. (It is also sufficient when q = 0; 
see, for example, Ansley 1979, pp. 61–62.) Because the com-
putation of the Cholesky factor of T

1 1V V  is a key step in   
the new algorithm, the impossibility of carrying out this op-
eration indicates that the model considered is not stationary. 
Note, however, that existence of the Cholesky decomposition 
does not guarantee stationarity for a mixed model. 
 Finally, it is shown how to calculate the residuals for a 
given set of observations and parameter values, using some of 
the computations carried so far to evaluate the exact likelihood 
function. From (2) and the definitions of K and Z, it turns out 
that E[ | ]   â a w Kw Zû , with 0Kw â  [see (8)] and 

1 T 1 T= E[ | ] ( ) 
  û u w T w     [see (5)]. Then, not-

ing (4), (7), (8) and (12), it is possible to show that 

 
T T 1 T

1
0

( )  
    

M I M H HM M h
â â D

0



. (23) 

Thus, using previous computations, the “unconditional” or 
“exact” residual vector â can be evaluated by (i) using 
backward substitution to solve for c in the upper-triangular 
system LTc = λ, (ii) computing the gm�×�1 vector d = Mc, 
and (iii) evaluating â = â0 − r, where the i-th block of the 
nm�×�1 vector 1 T T T[ , ]r D d 0  is given by 

 
1

( 1, ..., )
i

i i j j
j

i n


 r d , 

with dj = 0 for j > g. Conditional on maximum likelihood 
estimates being equal to the true model parameter values, the 
residuals thus calculated can be shown to be Normally distrib-
uted with E[�ât�] = 0. Further, it can be shown that as t tends 
to n, ât converges in quadratic mean to at and the ’stâ  tend  
to be uncorrelated, with TE[ ]t tâ â  converging to σ�2Q. (When 
q = 0, this convergence occurs exactly for t > p.) These 
properties are shared with the residuals obtained by using the 
Kalman filter to evaluate the exact likelihood function (Shea 
1984, p. 93; 1989, p. 162). 
 To conclude, Table 3 shows a comparative summary of    
the evaluation algorithms considered in this section, in terms 
of the following features: (i) exact evaluation of the likeli- 
hood function; (ii) “approximate” evaluation of the likeli-
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Table 3.  Comparison of the Various Algorithms to Evaluate the Likelihood Function 

 Hall and Nicholls 
(1980) 

Ljung and Box 
(1979) 

Hillmer and Tiao 
(1979) 

Shea 
(1987, 1989) New  Algortihm 

Exact evaluation Yes Yes No a Yes Yes 
Approximate evaluation Yes b Yes b Yes c Yes Yes 
Computational efficiency No No Yes d Yes e Yes e 
Numerical precision and stability Yes No No a Yes Yes 
Detection of nonstationarity Yes Yes No Yes Yes 
Detection of noninvertibility Yes Yes Yes No Yes 
Calculation of appropriate residuals Yes b Yes No a Yes Yes 

a Except in the case of pure moving average models (�p = 0�). 
b Though this feature is not mentioned nor exploited in the papers cited. 
c In fact this is the only possibility offered by this method, which is based on questionable assumptions and does not permit control of the accuracy of the approximation. 
d Only when the model contains an autoregressive part (�p ≠ 0�). 
e See the comparison in Table 2. 
 
 
hood function, as accurate as desired and in most cases sig- 
nificantly faster than the exact evaluation; (iii) computational 
efficiency, in terms of the number of time-consuming op- 
erations required; (iv) numerical accuracy and stability; (v) 
detection, as a by-product, of nonstationary and�/or nonin- 
vertible models; and (vi) evaluation of an appropriate residual 
vector using some of the computations carried to evaluate    
the likelihood function. 
 In summary, the new evaluation algorithm provides a set   
of useful features, not found together in any of the other 
existing methods, that can be put to work effectively in the 
context of maximum likelihood estimation of vector ARMA 
models. 
 

3. MAXIMIZATION OF THE EXACT 
LIKELIHOOD FUNCTION 

 
 Having devised a method of computing the exact likeli- 
hood function, we now seek how to maximize it with respect 
to the parameters 1[ , ..., ]p   , 1[ , ..., ]q   , μ, 
σ�2, and Q�. The parameter σ�2 may be differentiated out        
of equation (3) to yield the following concentrated log- 
likelihood: 

( , , , | )l Q w    

   1 2
2

 log 1 log( )
2 2
nm n

nm
       , (24) 

where 
 T T

1 ( )m      , (25) 

 1/
2 | || | n  Q D , (26) 

and the gm�×�gm matrix D is given by T T D I M H HM  
[see (15) and (16)]. Thus maximizing (24) is equivalent to 
minimizing 
 1 2 .     (27�) 

 Let Π0 be the value of (27�) at the initial estimates of the 
parameters (�Π0 = Π10 Π20�). Thus if we minimize, instead of 
(27�), the function 

 1 2

0 10 20

,F
  

  
 (28) 

using a routine that generates descent search directions in 
every iteration, then the objective function F always lies in  
the interval (�0,�1�). This fact has two advantages. On the one 
hand, it improves the overall accuracy and numerical stability 
of the minimization routine, especially in the computation of 
the gradient vector through finite differences. On the other 
hand, it provides a simple means of handling situations in 
which the algorithm generates new estimates that imply 
nonstationarity, noninvertibility, and�/or non–positive def-
initeness of the matrix Q. In such instances, which can be 
detected as described in the previous section, the scaled ob-
jective function (28) is set to 1. Thus the minimization rou-
tine will reject these points and continue the search for an 
acceptable local optimum. Note that this strategy is basically 
the one proposed by Shea (1984, pp. 90–100), although we  
do not solve the determinantal polynomials |Φ(�B�)|=�0 and 
|Θ(�B�)|=�0 to check for nonstationarity and noninvertibility, 
because the new evaluation algorithm provides simpler means 
for carrying out those checks. 
 To generate improving search directions, we use a quasi-
Newton method based on the factorized version of the BFGS 
formula (see, for example, Dennis and Schnabel 1983, chap. 
9). Besides computational efficiency, this method provides,   
as a by-product, a means of estimating the covariance matrix 
of the parameter estimators, because the relevant information 
on the curvature of the objective function (28) is updated at 
every iteration along with the computation of the search 
direction. From (24), the information matrix is given by 

 T 2
2

E 
22

n n        
I    , 

where �Π is the gradient vector of (27�) and �2Π is the 
Hessian matrix. Because �Π = 0 at any local optimum, a 
sample estimate of the covariance matrix is given by 

2 12 ( )F n F   , where F and 2 1( )F   are evaluated at the 
final estimates. If we use a quasi-Newton method based on  
the factorized version of the BFGS formula to minimize (28), 
then we will have at the end of the iterative process an ap-
proximation to the Cholesky factor of 2F  (see Dennis and 
Schnabel 1983, pp. 206–207�), which makes the computation 
of the covariance matrix estimate straightforward. 
 In summary, we suggest the use of the following proce-
dure to maximize the exact likelihood function of a vector 
ARMA model: 
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4 1. Choose a suitable set of initial estimates of the para-
meters and compute Π10 and Π20 from (25) and (26). 
 2. Minimize the scaled objective function (28) using a 
quasi-Newton method based on the factorized version of the 
BFGS formula. 
 3. On convergence, use the accumulated information on 
the Cholesky factor of 2F  to evaluate a sample estimate of 
the covariance matrix as 2 12 ( )F n F   . 
 
 Each time that we compute Π1 and Π2 from (25) and     
(26), we make use of the evaluation algorithm of the previous 
section and set the scaled objective function (28) to 1 when-
ever the algorithm detects nonstationarity, noninvertibility, 
and�/or non–positive definiteness of Q�. It must be noted that 
for a mixed model, the algorithm may converge to a non-
stationary point. Although this has never happened in prac- 
tice, the computation (on convergence) of the roots of 
|Φ(�B�)|=�0 should be performed to ensure that the final 
estimates are admissible. The residual vector is evaluated  
only after the minimization routine has converged, because    
it is not used during the iterative process. Note also that all   
of these computations can be speeded up using the approx-
imation to the exact likelihood function discussed in the 
previous section. Finally, initial estimates may be conditional 
maximum likelihood estimates or those obtained with other 
fast linear estimation methods (see, for example, Koreisha and 
Pukkila 1989 or Shea 1987�), although care must be taken to 
ensure that they are admissible. 
 
 

4. AN EXAMPLE 
 
 It is well known (see, for example, Ansley and Newbold 
1980 or Hillmer and Tiao 1979) that exact maximum like-
lihood estimation is usually preferable to other approx-    
imate estimation criteria, especially in the case of small- to 
moderate-sized samples and�/or parameters close to the 
boundaries of the admissible regions. This issue is not pur-
sued further here. Instead, it is illustrated with an example 
that a set of conditions may hold under which the estimation 
method proposed in this article performs better than one of the 
most frequently used in practice, the “exact” version of the 
procedure of Hillmer and Tiao (1979) as implemented in The 
PC SCA Statistical System, release 4.1 (see Liu and Hudak 
1992, pp. 5.15–5.16). 
 A series of 120 monthly observations on the Energy com-
ponent of the Spanish Industrial Production Index, covering 
the period January 1982–December 1991, has been consid-
ered. The data have been obtained from the Boletín Esta-
dístico del Banco de España (Banco de España, Madrid) and 
are available on request from the author. 
 After trying some alternative patterns of differentiation     
on the original series, it seems clear that 12=t tw z , where 
z�t denotes the natural logarithm of the original series, can     
be considered to be stationary (see Fig. 1). The autocorre-
lation and partial autocorrelation functions for wt (see Fig.    
1) suggest that this time series might be described by an 
MA(1)×MA(1)12 model. 
 However, non-sample information suggests the inclusion 
of two deterministic variables, 1t  and 2t , representing the 

 

 
Figure 1. Series t 12 tw z=  : Standardized Series (Top), Auto-

correlation Function (Bottom Left), and Partial Autocorrelation Function 
(Bottom Right). w .0011 (.0051) ; wσ .0524= . Ljung–Box (1978) 
statistic: =Q(39) 118.0 . This high value of the Q statistic merely reflects 
the so-far un-modeled structure observed in the autocorrelation and 
partial autocorrelation functions. 

 
Easter holiday and a unit impulse effect in February 1990. 
Thus the following intervention model is specified: 

 1 1 2 2 ,t t t tz N       (29) 

 12
12 1 1(1 )(1 ) .t tN B B a      (30) 

 The estimates of (29) and (30) obtained with both the    
exact and approximate versions of the new algorithm, and 
those obtained with the algorithm of Hillmer and Tiao   
(1979), are summarized in Table 4. Clearly, there is no ap-
preciable difference between the exact and approximate (ob-
tained with δ = .01) estimates calculated with the new al-
gorithm. Further, these estimates are almost identical to those 
obtained with the procedure of Hillmer and Tiao (1979). Of 
course, there is no appreciable difference to be found in the 
 

Table 4.  Estimation of Model (29)–(30) a,b 

 Exact c Approximate c Hillmer and Tiao 
(1979) d 

1ω  −.04 (.01) −.04 (.01) −.04 (.01) 

2ω  −.09 (.03) −.09 (.02) −.09 (.03) 

1θ  .60 (.14) .60 (.14) .61 (.08) 

1Θ  .84 (.13) .84 (.13) .86 (.06) 

aσ  .0298 .0298 .0296 
a Initial estimates: 1ω .03, 2ω .09, 1θ .5,  and 1Θ .5.  
b Standard errors in parentheses. 
c Convergence obtained in 25 iterations. 
d Convergence obtained in 49 iterations.
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Figure 2. Estimation of (29)–(30) with the New Algorithm: 

Standardized Residuals (Top), Autocorrelation (Bottom Left), and Partial 
Autocorrelation (Bottom Right) Functions. a .0016 (.0028) ; aσ̂  
.0298�. Ljung–Box (1978) statistic: Q(37) 49.4 . The autocorrelation 
function might suggest the adding of a second-order seasonal auto-
regressive operator to the model. 

 
residuals and their autocorrelation functions, represented in 
Figures 2 and 3. 
 Although the estimated model seems adequate, one may 
want to add a second-order seasonal AR term to the model    
as an overfitting exercise, because AR(2)12 operators with 
imaginary roots are found frequently in Spanish Industrial 
Production Indices. This action will cope with the high value 
of the residual autocorrelation functions at lag 24 (see Figs.   
2 and 3), and, although the resulting model may be over-
parameterized, it is a model that might be used for forecasting 
purposes. Thus model (29)–(30) is re-specified as follows: 

 1 1 2 2 ,t t t tz N       (31) 

12 24
1 2 12(1 ) tB B N      

 12
1 1(1 )(1 ) .tB B a     (32) 

 The estimates of (31) and (32) obtained with both the    
exact and approximate versions of the new algorithm, and 
those obtained with the algorithm of Hillmer and Tiao   
(1979), are summarized in Table 5. 
 The estimates obtained with the exact and approximate 
versions of the new algorithm are again almost identical. 
Further, these estimates are close to those obtained with the 
procedure of Hillmer and Tiao (1979), except for the sea-
sonal MA parameter, which is estimated to be noninvertible 
using that method, whereas it is invertible if we use the new 
algorithm. This difference can be explained by examining the 

 

 
Figure 3. Estimation of (29)–(30) with the Algorithm of Hillmer and 

Tiao (1979): Standardized Residuals (Top), Autocorrelation (Bottom 
Left), and Partial Autocorrelation (Bottom Right) Functions. 

a .0015 (.0027) ; aσ̂  .0296�. Ljung–Box (1978) statistic: =Q(37)  
49.4�. The autocorrelation function might suggest the adding of a 
second-order seasonal autoregressive operator to the model. 

 
residuals depicted in Figures 4 and 5. 
 Figure 4 presents the (standardized) residuals, evaluated 
from (23), corresponding to the estimates obtained with the 
new algorithm, along with their autocorrelation and partial 
autocorrelation functions. The same information is presented 
in Figure 5, using the output generated by the procedure of 
Hillmer and Tiao (1979). 
 With regard to Figure 5, it may be noted that the first 24 
residuals are not available, because the first p observations of 
wt are used by the method of Hillmer and Tiao (1979) as 
starting values to compute a sequence supposedly generated by 
the MA part of the model. Further, the autocorrelation and 

 
Table 5.  Estimation of Model (31)–(32) a,b 

 Exact c Approximate c Hillmer and Tiao 
(1979) d 

1ω  −.04 (.01) −.04 (.01) −.04 (.01) 

2ω  −.09 (.02) −.09 (.02) −.09 (.02) 

1Φ  −.04 (.14) −.04 (.14) −.11 (.10) 

2Φ  −.23 (.12) −.24 (.12) −.23 (.10) 

1θ  .54 (.16) .54 (.16) .63 (.09) 

1Θ  .75 (.15) .76 (.15) 1.09 (.08) 

aσ  .0293 .0293 .0240 
a Initial estimates: 1ω .03, 2ω .09, 1Φ .1, 2Φ .1, 1θ .5,  and 1Θ .5.  
b Standard errors in parentheses. 
c Convergence obtained in 36 iterations. 
d Convergence not obtained within 100 iterations. The procedure was restarted using as initial 

estimates the final ones from the Exact column, but it did not converge either.
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Figure 4. Estimation of (31)–(32) with the New Algorithm: 

Standardized Residuals (Top), Autocorrelation (Bottom Left), and Partial 
Autocorrelation (Bottom Right) Functions. a .0016 (.0027) ; aσ̂  
.0293�. Ljung–Box (1978) statistic: Q(35) 45.8 . Although Q(35) 
suggests misspecification, no structure is appreciated in the auto-
correlation functions. (Most likely, that value is due to outliers.) 

 
partial autocorrelation functions of Figure 5 suggest the need 
for a first-order seasonal MA operator, which in fact is 
already included but it is estimated to be noninvertible. 
 The problem lies in the presence of the observation cor-
responding to January 1985, which shows a residual only 
slightly larger than two standard deviations in Figure 4, 
though it pushes the seasonal MA operator out of the in-
vertibility region when the method of Hillmer and Tiao (1979) 
is used. To see this, the following intervention model has been 
estimated: 

 1 1 2 2 3 3 ,t t t t tz N          (33) 

12 24
1 2 12(1 ) tB B N      

 12
1 1(1 )(1 ) ,tB B a     (34) 

where 3t  is a unit impulse variable in January 1985. The 
estimates of (33) and (34) are summarized in Table 6. The 
seasonal MA operator now lies within the invertibility region 
using either the new algorithm or the procedure of Hillmer 
and Tiao (1979). This in fact was the case in Table 5 when the 
new algorithm was used. Note also from Table 6 that Φ2 is 
clearly significantly different from zero. 
 Thus when estimating a model with an AR term, if an 
extreme value occurs in one of the first p observations, then 
the new algorithm performs robustly, whereas the algorithm 
of Hillmer and Tiao (1979) can be misleading. Furthermore in 
the example the residual corresponding to January 1985 does 

 

 
Figure 5. Estimation of (31)–(32) with the Algorithm of Hillmer and 

Tiao (1979): Standardized Residuals (Top), Autocorrelation (Bottom 
Left), and Partial Autocorrelation (Bottom Right) Functions. 

a .0001 (.0024) ; aσ̂ .0240�. Ljung–Box (1978) statistic: Q(35)  
44.3�. The autocorrelation and partial autocorrelation functions suggest 
the need for a first-order seasonal moving average operator. 

 
not appear in Figure 5; hence a situation of this kind is hard to 
detect if the latter method is used. 
 

5. CONCLUSIONS 
 
 Both the theoretical development and the illustration of the 
performance of the estimation algorithm proposed in this 
article have shown the following important points: 
 
 1. It is possible to improve, as in Section 2, existing 
methods of evaluating the exact likelihood function of vector 

 
Table 6.  Estimation of Model (33)–(34) a,b 

 Exact c Approximate c Hillmer and Tiao 
(1979) d 

1ω  −.04 (.01) −.04 (.01) −.04 (.01) 

2ω  −.10 (.02) −.10 (.02) −.10 (.02) 

3ω  .08 (.02) .08 (.02) .07 (.02) 

1Φ  −.12 (.14) −.12 (.14) −.17 (.11) 

2Φ  −.34 (.12) −.33 (.12) −.31 (.10) 

1θ  .39 (.15) .39 (.15) .50 (.10) 

1Θ  .64 (.15) .64 (.15) .70 (.09) 

aσ  .0280 .0280 .0266 
a Initial estimates: 1ω .03,  2ω .09,  3ω .08,  1Φ .1,  2Φ .1,  1θ .5,  and 

1Θ .5.  
b Standard errors in parentheses. 
c Convergence obtained in 41 iterations. 
d Convergence obtained in 50 iterations.
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ARMA models to put together a set of useful features that can 
only be found separately in currently available methods. 
 2. The adaptation of a computationally efficient mini-
mization routine to those features yields an estimation pro-
cedure that not only provides true maximum likelihood es-
timates, but also provides useful instruments for diagnostic 
checking of the fitted models. 
 3. Actual situations may occur in which the new esti- 
mation algorithm performs better than the algorithms fre-
quently used. 
 
 The procedures outlined in this article can be taken as a 
starting point in the development of new methods of esti-
mating some generalizations of the vector ARMA model,  
such as the joint estimation of both the ARMA parameters  
and the coefficients of common nonstationary factors in 
multivariate models with series containing such factors.   
Other applications of those procedures, including the joint 
estimation of both the ARMA structure and the deterministic 
components associated with a vector of time series, are 
straightforward. 
 

[�Received April 1993. Revised January 1994, September 2024.] 
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